AWSSDK.LexRuntime
Amazon Lex provides both build and runtime endpoints. Each endpoint provides a set of operations (API). Your conversational bot uses the runtime API to understand user utterances (user input text or voice). For example, suppose a user says "I want pizza", your bot sends this input to Amazon Lex using the runtime API. Amazon Lex recognizes that the user request is for the OrderPizza intent (one of the intents defined in the bot). Then Amazon Lex engages in user conversation on behalf of the bot to elicit required information (slot values, such as pizza size and crust type), and then performs fulfillment activity (that you configured when you created the bot). You use the build-time API to create and manage your Amazon Lex bot. For a list of build-time operations, see the build-time API, .
This document is generated from apis/runtime.lex-2016-11-28.normal.json. See JuliaCloud/AWSCore.jl.
AWSSDK.LexRuntime.post_content
— Function.using AWSSDK.LexRuntime.post_content
post_content([::AWSConfig], arguments::Dict)
post_content([::AWSConfig]; botName=, botAlias=, userId=, Content-Type=, inputStream=, <keyword arguments>)
using AWSCore.Services.runtime_lex
runtime_lex([::AWSConfig], "POST", "/bot/{botName}/alias/{botAlias}/user/{userId}/content", arguments::Dict)
runtime_lex([::AWSConfig], "POST", "/bot/{botName}/alias/{botAlias}/user/{userId}/content", botName=, botAlias=, userId=, Content-Type=, inputStream=, <keyword arguments>)
PostContent Operation
Sends user input (text or speech) to Amazon Lex. Clients use this API to send text and audio requests to Amazon Lex at runtime. Amazon Lex interprets the user input using the machine learning model that it built for the bot.
The PostContent
operation supports audio input at 8kHz and 16kHz. You can use 8kHz audio to achieve higher speech recognition accuracy in telephone audio applications.
In response, Amazon Lex returns the next message to convey to the user. Consider the following example messages:
For a user input "I would like a pizza," Amazon Lex might return a response with a message eliciting slot data (for example,
PizzaSize
): "What size pizza would you like?".After the user provides all of the pizza order information, Amazon Lex might return a response with a message to get user confirmation: "Order the pizza?".
After the user replies "Yes" to the confirmation prompt, Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza has been ordered.".
Not all Amazon Lex messages require a response from the user. For example, conclusion statements do not require a response. Some messages require only a yes or no response. In addition to the message
, Amazon Lex provides additional context about the message in the response that you can use to enhance client behavior, such as displaying the appropriate client user interface. Consider the following examples:
If the message is to elicit slot data, Amazon Lex returns the following context information:
x-amz-lex-dialog-state
header set toElicitSlot
x-amz-lex-intent-name
header set to the intent name in the current contextx-amz-lex-slot-to-elicit
header set to the slot name for which themessage
is eliciting informationx-amz-lex-slots
header set to a map of slots configured for the intent with their current values
If the message is a confirmation prompt, the
x-amz-lex-dialog-state
header is set toConfirmation
and thex-amz-lex-slot-to-elicit
header is omitted.If the message is a clarification prompt configured for the intent, indicating that the user intent is not understood, the
x-amz-dialog-state
header is set toElicitIntent
and thex-amz-slot-to-elicit
header is omitted.
In addition, Amazon Lex also returns your application-specific sessionAttributes
. For more information, see Managing Conversation Context.
Arguments
botName = ::String
– Required
Name of the Amazon Lex bot.
botAlias = ::String
– Required
Alias of the Amazon Lex bot.
userId = ::String
– Required
The ID of the client application user. Amazon Lex uses this to identify a user's conversation with your bot. At runtime, each request must contain the userID
field.
To decide the user ID to use for your application, consider the following factors.
The
userID
field must not contain any personally identifiable information of the user, for example, name, personal identification numbers, or other end user personal information.If you want a user to start a conversation on one device and continue on another device, use a user-specific identifier.
If you want the same user to be able to have two independent conversations on two different devices, choose a device-specific identifier.
A user can't have two independent conversations with two different versions of the same bot. For example, a user can't have a conversation with the PROD and BETA versions of the same bot. If you anticipate that a user will need to have conversation with two different versions, for example, while testing, include the bot alias in the user ID to separate the two conversations.
x-amz-lex-session-attributes = ::String
You pass this value as the x-amz-lex-session-attributes
HTTP header.
Application-specific information passed between Amazon Lex and a client application. The value must be a JSON serialized and base64 encoded map with string keys and values. The total size of the sessionAttributes
and requestAttributes
headers is limited to 12 KB.
For more information, see Setting Session Attributes.
x-amz-lex-request-attributes = ::String
You pass this value as the x-amz-lex-request-attributes
HTTP header.
Request-specific information passed between Amazon Lex and a client application. The value must be a JSON serialized and base64 encoded map with string keys and values. The total size of the requestAttributes
and sessionAttributes
headers is limited to 12 KB.
The namespace x-amz-lex:
is reserved for special attributes. Don't create any request attributes with the prefix x-amz-lex:
.
For more information, see Setting Request Attributes.
Content-Type = ::String
– Required
You pass this value as the Content-Type
HTTP header.
Indicates the audio format or text. The header value must start with one of the following prefixes:
PCM format, audio data must be in little-endian byte order.
audio/l16; rate=16000; channels=1
audio/x-l16; sample-rate=16000; channel-count=1
audio/lpcm; sample-rate=8000; sample-size-bits=16; channel-count=1; is-big-endian=false
Opus format
audio/x-cbr-opus-with-preamble; preamble-size=0; bit-rate=256000; frame-size-milliseconds=4
Text format
text/plain; charset=utf-8
Accept = ::String
You pass this value as the Accept
HTTP header.
The message Amazon Lex returns in the response can be either text or speech based on the Accept
HTTP header value in the request.
If the value is
text/plain; charset=utf-8
, Amazon Lex returns text in the response.If the value begins with
audio/
, Amazon Lex returns speech in the response. Amazon Lex uses Amazon Polly to generate the speech (using the configuration you specified in theAccept
header). For example, if you specifyaudio/mpeg
as the value, Amazon Lex returns speech in the MPEG format.The following are the accepted values:
audio/mpeg
audio/ogg
audio/pcm
text/plain; charset=utf-8
audio/* (defaults to mpeg)
inputStream = blob
– Required
User input in PCM or Opus audio format or text format as described in the Content-Type
HTTP header.
You can stream audio data to Amazon Lex or you can create a local buffer that captures all of the audio data before sending. In general, you get better performance if you stream audio data rather than buffering the data locally.
Returns
PostContentResponse
Exceptions
NotFoundException
, BadRequestException
, LimitExceededException
, InternalFailureException
, ConflictException
, UnsupportedMediaTypeException
, NotAcceptableException
, RequestTimeoutException
, DependencyFailedException
, BadGatewayException
or LoopDetectedException
.
See also: AWS API Documentation
AWSSDK.LexRuntime.post_text
— Function.using AWSSDK.LexRuntime.post_text
post_text([::AWSConfig], arguments::Dict)
post_text([::AWSConfig]; botName=, botAlias=, userId=, inputText=, <keyword arguments>)
using AWSCore.Services.runtime_lex
runtime_lex([::AWSConfig], "POST", "/bot/{botName}/alias/{botAlias}/user/{userId}/text", arguments::Dict)
runtime_lex([::AWSConfig], "POST", "/bot/{botName}/alias/{botAlias}/user/{userId}/text", botName=, botAlias=, userId=, inputText=, <keyword arguments>)
PostText Operation
Sends user input (text-only) to Amazon Lex. Client applications can use this API to send requests to Amazon Lex at runtime. Amazon Lex then interprets the user input using the machine learning model it built for the bot.
In response, Amazon Lex returns the next message
to convey to the user an optional responseCard
to display. Consider the following example messages:
For a user input "I would like a pizza", Amazon Lex might return a response with a message eliciting slot data (for example, PizzaSize): "What size pizza would you like?"
After the user provides all of the pizza order information, Amazon Lex might return a response with a message to obtain user confirmation "Proceed with the pizza order?".
After the user replies to a confirmation prompt with a "yes", Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza has been ordered.".
Not all Amazon Lex messages require a user response. For example, a conclusion statement does not require a response. Some messages require only a "yes" or "no" user response. In addition to the message
, Amazon Lex provides additional context about the message in the response that you might use to enhance client behavior, for example, to display the appropriate client user interface. These are the slotToElicit
, dialogState
, intentName
, and slots
fields in the response. Consider the following examples:
If the message is to elicit slot data, Amazon Lex returns the following context information:
dialogState
set to ElicitSlotintentName
set to the intent name in the current contextslotToElicit
set to the slot name for which themessage
is eliciting informationslots
set to a map of slots, configured for the intent, with currently known values
If the message is a confirmation prompt, the
dialogState
is set to ConfirmIntent andSlotToElicit
is set to null.If the message is a clarification prompt (configured for the intent) that indicates that user intent is not understood, the
dialogState
is set to ElicitIntent andslotToElicit
is set to null.
In addition, Amazon Lex also returns your application-specific sessionAttributes
. For more information, see Managing Conversation Context.
Arguments
botName = ::String
– Required
The name of the Amazon Lex bot.
botAlias = ::String
– Required
The alias of the Amazon Lex bot.
userId = ::String
– Required
The ID of the client application user. Amazon Lex uses this to identify a user's conversation with your bot. At runtime, each request must contain the userID
field.
To decide the user ID to use for your application, consider the following factors.
The
userID
field must not contain any personally identifiable information of the user, for example, name, personal identification numbers, or other end user personal information.If you want a user to start a conversation on one device and continue on another device, use a user-specific identifier.
If you want the same user to be able to have two independent conversations on two different devices, choose a device-specific identifier.
A user can't have two independent conversations with two different versions of the same bot. For example, a user can't have a conversation with the PROD and BETA versions of the same bot. If you anticipate that a user will need to have conversation with two different versions, for example, while testing, include the bot alias in the user ID to separate the two conversations.
sessionAttributes = ::Dict{String,String}
Application-specific information passed between Amazon Lex and a client application.
For more information, see Setting Session Attributes.
requestAttributes = ::Dict{String,String}
Request-specific information passed between Amazon Lex and a client application.
The namespace x-amz-lex:
is reserved for special attributes. Don't create any request attributes with the prefix x-amz-lex:
.
For more information, see Setting Request Attributes.
inputText = ::String
– Required
The text that the user entered (Amazon Lex interprets this text).
Returns
PostTextResponse
Exceptions
NotFoundException
, BadRequestException
, LimitExceededException
, InternalFailureException
, ConflictException
, DependencyFailedException
, BadGatewayException
or LoopDetectedException
.
See also: AWS API Documentation