AWSSDK.MachineLearning
Definition of the public APIs exposed by Amazon Machine Learning
This document is generated from apis/machinelearning-2014-12-12.normal.json. See JuliaCloud/AWSCore.jl.
AWSSDK.MachineLearning.add_tags
AWSSDK.MachineLearning.create_batch_prediction
AWSSDK.MachineLearning.create_data_source_from_rds
AWSSDK.MachineLearning.create_data_source_from_redshift
AWSSDK.MachineLearning.create_data_source_from_s3
AWSSDK.MachineLearning.create_evaluation
AWSSDK.MachineLearning.create_mlmodel
AWSSDK.MachineLearning.create_realtime_endpoint
AWSSDK.MachineLearning.delete_batch_prediction
AWSSDK.MachineLearning.delete_data_source
AWSSDK.MachineLearning.delete_evaluation
AWSSDK.MachineLearning.delete_mlmodel
AWSSDK.MachineLearning.delete_realtime_endpoint
AWSSDK.MachineLearning.delete_tags
AWSSDK.MachineLearning.describe_batch_predictions
AWSSDK.MachineLearning.describe_data_sources
AWSSDK.MachineLearning.describe_evaluations
AWSSDK.MachineLearning.describe_mlmodels
AWSSDK.MachineLearning.describe_tags
AWSSDK.MachineLearning.get_batch_prediction
AWSSDK.MachineLearning.get_data_source
AWSSDK.MachineLearning.get_evaluation
AWSSDK.MachineLearning.get_mlmodel
AWSSDK.MachineLearning.predict
AWSSDK.MachineLearning.update_batch_prediction
AWSSDK.MachineLearning.update_data_source
AWSSDK.MachineLearning.update_evaluation
AWSSDK.MachineLearning.update_mlmodel
AWSSDK.MachineLearning.add_tags
— Function.using AWSSDK.MachineLearning.add_tags
add_tags([::AWSConfig], arguments::Dict)
add_tags([::AWSConfig]; Tags=, ResourceId=, ResourceType=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "AddTags", arguments::Dict)
machinelearning([::AWSConfig], "AddTags", Tags=, ResourceId=, ResourceType=)
AddTags Operation
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object, AddTags
updates the tag's value.
Arguments
Tags = [[ ... ], ...]
– Required
The key-value pairs to use to create tags. If you specify a key without specifying a value, Amazon ML creates a tag with the specified key and a value of null.
Tags = [[
"Key" => ::String,
"Value" => ::String
], ...]
ResourceId = ::String
– Required
The ID of the ML object to tag. For example, exampleModelId
.
ResourceType = "BatchPrediction", "DataSource", "Evaluation" or "MLModel"
– Required
The type of the ML object to tag.
Returns
AddTagsOutput
Exceptions
InvalidInputException
, InvalidTagException
, TagLimitExceededException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.create_batch_prediction
— Function.using AWSSDK.MachineLearning.create_batch_prediction
create_batch_prediction([::AWSConfig], arguments::Dict)
create_batch_prediction([::AWSConfig]; BatchPredictionId=, MLModelId=, BatchPredictionDataSourceId=, OutputUri=, <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "CreateBatchPrediction", arguments::Dict)
machinelearning([::AWSConfig], "CreateBatchPrediction", BatchPredictionId=, MLModelId=, BatchPredictionDataSourceId=, OutputUri=, <keyword arguments>)
CreateBatchPrediction Operation
Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a DataSource
. This operation creates a new BatchPrediction
, and uses an MLModel
and the data files referenced by the DataSource
as information sources.
CreateBatchPrediction
is an asynchronous operation. In response to CreateBatchPrediction
, Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction
status to PENDING
. After the BatchPrediction
completes, Amazon ML sets the status to COMPLETED
.
You can poll for status updates by using the GetBatchPrediction operation and checking the Status
parameter of the result. After the COMPLETED
status appears, the results are available in the location specified by the OutputUri
parameter.
Arguments
BatchPredictionId = ::String
– Required
A user-supplied ID that uniquely identifies the BatchPrediction
.
BatchPredictionName = ::String
A user-supplied name or description of the BatchPrediction
. BatchPredictionName
can only use the UTF-8 character set.
MLModelId = ::String
– Required
The ID of the MLModel
that will generate predictions for the group of observations.
BatchPredictionDataSourceId = ::String
– Required
The ID of the DataSource
that points to the group of observations to predict.
OutputUri = ::String
– Required
The location of an Amazon Simple Storage Service (Amazon S3) bucket or directory to store the batch prediction results. The following substrings are not allowed in the s3 key
portion of the outputURI
field: ':', '//', '/./', '/../'.
Amazon ML needs permissions to store and retrieve the logs on your behalf. For information about how to set permissions, see the Amazon Machine Learning Developer Guide.
Returns
CreateBatchPredictionOutput
Exceptions
InvalidInputException
, InternalServerException
or IdempotentParameterMismatchException
.
See also: AWS API Documentation
using AWSSDK.MachineLearning.create_data_source_from_rds
create_data_source_from_rds([::AWSConfig], arguments::Dict)
create_data_source_from_rds([::AWSConfig]; DataSourceId=, RDSData=, RoleARN=, <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "CreateDataSourceFromRDS", arguments::Dict)
machinelearning([::AWSConfig], "CreateDataSourceFromRDS", DataSourceId=, RDSData=, RoleARN=, <keyword arguments>)
CreateDataSourceFromRDS Operation
Creates a DataSource
object from an Amazon Relational Database Service (Amazon RDS). A DataSource
references data that can be used to perform CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromRDS
is an asynchronous operation. In response to CreateDataSourceFromRDS
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in the COMPLETED
or PENDING
state can be used only to perform >CreateMLModel
>, CreateEvaluation
, or CreateBatchPrediction
operations.
If Amazon ML cannot accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
Arguments
DataSourceId = ::String
– Required
A user-supplied ID that uniquely identifies the DataSource
. Typically, an Amazon Resource Number (ARN) becomes the ID for a DataSource
.
DataSourceName = ::String
A user-supplied name or description of the DataSource
.
RDSData = [ ... ]
– Required
The data specification of an Amazon RDS DataSource
:
DatabaseInformation -
DatabaseName
- The name of the Amazon RDS database.InstanceIdentifier
- A unique identifier for the Amazon RDS database instance.
DatabaseCredentials - AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon RDS database.
ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by an EC2 instance to carry out the copy task from Amazon RDS to Amazon Simple Storage Service (Amazon S3). For more information, see Role templates for data pipelines.
ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.
SecurityInfo - The security information to use to access an RDS DB instance. You need to set up appropriate ingress rules for the security entity IDs provided to allow access to the Amazon RDS instance. Specify a [
SubnetId
,SecurityGroupIds
] pair for a VPC-based RDS DB instance.SelectSqlQuery - A query that is used to retrieve the observation data for the
Datasource
.S3StagingLocation - The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using
SelectSqlQuery
is stored in this location.DataSchemaUri - The Amazon S3 location of the
DataSchema
.DataSchema - A JSON string representing the schema. This is not required if
DataSchemaUri
is specified.DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
Datasource
.Sample -
"{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
RDSData = [
"DatabaseInformation" => <required> [
"InstanceIdentifier" => <required> ::String,
"DatabaseName" => <required> ::String
],
"SelectSqlQuery" => <required> ::String,
"DatabaseCredentials" => <required> [
"Username" => <required> ::String,
"Password" => <required> ::String
],
"S3StagingLocation" => <required> ::String,
"DataRearrangement" => ::String,
"DataSchema" => ::String,
"DataSchemaUri" => ::String,
"ResourceRole" => <required> ::String,
"ServiceRole" => <required> ::String,
"SubnetId" => <required> ::String,
"SecurityGroupIds" => <required> [::String, ...]
]
RoleARN = ::String
– Required
The role that Amazon ML assumes on behalf of the user to create and activate a data pipeline in the user's account and copy data using the SelectSqlQuery
query from Amazon RDS to Amazon S3.
ComputeStatistics = ::Bool
The compute statistics for a DataSource
. The statistics are generated from the observation data referenced by a DataSource
. Amazon ML uses the statistics internally during MLModel
training. This parameter must be set to true
if the DataSource needs to be used for MLModel
training.
Returns
CreateDataSourceFromRDSOutput
Exceptions
InvalidInputException
, InternalServerException
or IdempotentParameterMismatchException
.
See also: AWS API Documentation
using AWSSDK.MachineLearning.create_data_source_from_redshift
create_data_source_from_redshift([::AWSConfig], arguments::Dict)
create_data_source_from_redshift([::AWSConfig]; DataSourceId=, DataSpec=, RoleARN=, <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "CreateDataSourceFromRedshift", arguments::Dict)
machinelearning([::AWSConfig], "CreateDataSourceFromRedshift", DataSourceId=, DataSpec=, RoleARN=, <keyword arguments>)
CreateDataSourceFromRedshift Operation
Creates a DataSource
from a database hosted on an Amazon Redshift cluster. A DataSource
references data that can be used to perform either CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromRedshift
is an asynchronous operation. In response to CreateDataSourceFromRedshift
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in COMPLETED
or PENDING
states can be used to perform only CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
If Amazon ML can't accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a SelectSqlQuery
query. Amazon ML executes an Unload
command in Amazon Redshift to transfer the result set of the SelectSqlQuery
query to S3StagingLocation
.
After the DataSource
has been created, it's ready for use in evaluations and batch predictions. If you plan to use the DataSource
to train an MLModel
, the DataSource
also requires a recipe. A recipe describes how each input variable will be used in training an MLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call GetDataSource
for an existing datasource and copy the values to a CreateDataSource
call. Change the settings that you want to change and make sure that all required fields have the appropriate values.
Arguments
DataSourceId = ::String
– Required
A user-supplied ID that uniquely identifies the DataSource
.
DataSourceName = ::String
A user-supplied name or description of the DataSource
.
DataSpec = [ ... ]
– Required
The data specification of an Amazon Redshift DataSource
:
DatabaseInformation -
DatabaseName
- The name of the Amazon Redshift database.ClusterIdentifier
- The unique ID for the Amazon Redshift cluster.
DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.
SelectSqlQuery - The query that is used to retrieve the observation data for the
Datasource
.S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the
SelectSqlQuery
query is stored in this location.DataSchemaUri - The Amazon S3 location of the
DataSchema
.DataSchema - A JSON string representing the schema. This is not required if
DataSchemaUri
is specified.DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
DataSource
.Sample -
"{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
DataSpec = [
"DatabaseInformation" => <required> [
"DatabaseName" => <required> ::String,
"ClusterIdentifier" => <required> ::String
],
"SelectSqlQuery" => <required> ::String,
"DatabaseCredentials" => <required> [
"Username" => <required> ::String,
"Password" => <required> ::String
],
"S3StagingLocation" => <required> ::String,
"DataRearrangement" => ::String,
"DataSchema" => ::String,
"DataSchemaUri" => ::String
]
RoleARN = ::String
– Required
A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following:
A security group to allow Amazon ML to execute the
SelectSqlQuery
query on an Amazon Redshift clusterAn Amazon S3 bucket policy to grant Amazon ML read/write permissions on the
S3StagingLocation
ComputeStatistics = ::Bool
The compute statistics for a DataSource
. The statistics are generated from the observation data referenced by a DataSource
. Amazon ML uses the statistics internally during MLModel
training. This parameter must be set to true
if the DataSource
needs to be used for MLModel
training.
Returns
CreateDataSourceFromRedshiftOutput
Exceptions
InvalidInputException
, InternalServerException
or IdempotentParameterMismatchException
.
See also: AWS API Documentation
using AWSSDK.MachineLearning.create_data_source_from_s3
create_data_source_from_s3([::AWSConfig], arguments::Dict)
create_data_source_from_s3([::AWSConfig]; DataSourceId=, DataSpec=, <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "CreateDataSourceFromS3", arguments::Dict)
machinelearning([::AWSConfig], "CreateDataSourceFromS3", DataSourceId=, DataSpec=, <keyword arguments>)
CreateDataSourceFromS3 Operation
Creates a DataSource
object. A DataSource
references data that can be used to perform CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromS3
is an asynchronous operation. In response to CreateDataSourceFromS3
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
has been created and is ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in the COMPLETED
or PENDING
state can be used to perform only CreateMLModel
, CreateEvaluation
or CreateBatchPrediction
operations.
If Amazon ML can't accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
The observation data used in a DataSource
should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by the DataSource
.
After the DataSource
has been created, it's ready to use in evaluations and batch predictions. If you plan to use the DataSource
to train an MLModel
, the DataSource
also needs a recipe. A recipe describes how each input variable will be used in training an MLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
Arguments
DataSourceId = ::String
– Required
A user-supplied identifier that uniquely identifies the DataSource
.
DataSourceName = ::String
A user-supplied name or description of the DataSource
.
DataSpec = [ ... ]
– Required
The data specification of a DataSource
:
DataLocationS3 - The Amazon S3 location of the observation data.
DataSchemaLocationS3 - The Amazon S3 location of the
DataSchema
.DataSchema - A JSON string representing the schema. This is not required if
DataSchemaUri
is specified.DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
Datasource
.Sample -
"{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
DataSpec = [
"DataLocationS3" => <required> ::String,
"DataRearrangement" => ::String,
"DataSchema" => ::String,
"DataSchemaLocationS3" => ::String
]
ComputeStatistics = ::Bool
The compute statistics for a DataSource
. The statistics are generated from the observation data referenced by a DataSource
. Amazon ML uses the statistics internally during MLModel
training. This parameter must be set to true
if the DataSource needs to be used for MLModel
training.
Returns
CreateDataSourceFromS3Output
Exceptions
InvalidInputException
, InternalServerException
or IdempotentParameterMismatchException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.create_evaluation
— Function.using AWSSDK.MachineLearning.create_evaluation
create_evaluation([::AWSConfig], arguments::Dict)
create_evaluation([::AWSConfig]; EvaluationId=, MLModelId=, EvaluationDataSourceId=, <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "CreateEvaluation", arguments::Dict)
machinelearning([::AWSConfig], "CreateEvaluation", EvaluationId=, MLModelId=, EvaluationDataSourceId=, <keyword arguments>)
CreateEvaluation Operation
Creates a new Evaluation
of an MLModel
. An MLModel
is evaluated on a set of observations associated to a DataSource
. Like a DataSource
for an MLModel
, the DataSource
for an Evaluation
contains values for the Target Variable
. The Evaluation
compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the MLModel
functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding MLModelType
: BINARY
, REGRESSION
or MULTICLASS
.
CreateEvaluation
is an asynchronous operation. In response to CreateEvaluation
, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to PENDING
. After the Evaluation
is created and ready for use, Amazon ML sets the status to COMPLETED
.
You can use the GetEvaluation
operation to check progress of the evaluation during the creation operation.
Arguments
EvaluationId = ::String
– Required
A user-supplied ID that uniquely identifies the Evaluation
.
EvaluationName = ::String
A user-supplied name or description of the Evaluation
.
MLModelId = ::String
– Required
The ID of the MLModel
to evaluate.
The schema used in creating the MLModel
must match the schema of the DataSource
used in the Evaluation
.
EvaluationDataSourceId = ::String
– Required
The ID of the DataSource
for the evaluation. The schema of the DataSource
must match the schema used to create the MLModel
.
Returns
CreateEvaluationOutput
Exceptions
InvalidInputException
, InternalServerException
or IdempotentParameterMismatchException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.create_mlmodel
— Function.using AWSSDK.MachineLearning.create_mlmodel
create_mlmodel([::AWSConfig], arguments::Dict)
create_mlmodel([::AWSConfig]; MLModelId=, MLModelType=, TrainingDataSourceId=, <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "CreateMLModel", arguments::Dict)
machinelearning([::AWSConfig], "CreateMLModel", MLModelId=, MLModelType=, TrainingDataSourceId=, <keyword arguments>)
CreateMLModel Operation
Creates a new MLModel
using the DataSource
and the recipe as information sources.
An MLModel
is nearly immutable. Users can update only the MLModelName
and the ScoreThreshold
in an MLModel
without creating a new MLModel
.
CreateMLModel
is an asynchronous operation. In response to CreateMLModel
, Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel
status to PENDING
. After the MLModel
has been created and ready is for use, Amazon ML sets the status to COMPLETED
.
You can use the GetMLModel
operation to check the progress of the MLModel
during the creation operation.
CreateMLModel
requires a DataSource
with computed statistics, which can be created by setting ComputeStatistics
to true
in CreateDataSourceFromRDS
, CreateDataSourceFromS3
, or CreateDataSourceFromRedshift
operations.
Arguments
MLModelId = ::String
– Required
A user-supplied ID that uniquely identifies the MLModel
.
MLModelName = ::String
A user-supplied name or description of the MLModel
.
MLModelType = "REGRESSION", "BINARY" or "MULTICLASS"
– Required
The category of supervised learning that this MLModel
will address. Choose from the following types:
Choose
REGRESSION
if theMLModel
will be used to predict a numeric value.Choose
BINARY
if theMLModel
result has two possible values.Choose
MULTICLASS
if theMLModel
result has a limited number of values.
For more information, see the Amazon Machine Learning Developer Guide.
Parameters = ::Dict{String,String}
A list of the training parameters in the MLModel
. The list is implemented as a map of key-value pairs.
The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
.sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
.sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
. We strongly recommend that you shuffle your data.sgd.l1RegularizationAmount
- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly.sgd.l2RegularizationAmount
- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
TrainingDataSourceId = ::String
– Required
The DataSource
that points to the training data.
Recipe = ::String
The data recipe for creating the MLModel
. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
RecipeUri = ::String
The Amazon Simple Storage Service (Amazon S3) location and file name that contains the MLModel
recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
Returns
CreateMLModelOutput
Exceptions
InvalidInputException
, InternalServerException
or IdempotentParameterMismatchException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.create_realtime_endpoint
— Function.using AWSSDK.MachineLearning.create_realtime_endpoint
create_realtime_endpoint([::AWSConfig], arguments::Dict)
create_realtime_endpoint([::AWSConfig]; MLModelId=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "CreateRealtimeEndpoint", arguments::Dict)
machinelearning([::AWSConfig], "CreateRealtimeEndpoint", MLModelId=)
CreateRealtimeEndpoint Operation
Creates a real-time endpoint for the MLModel
. The endpoint contains the URI of the MLModel
; that is, the location to send real-time prediction requests for the specified MLModel
.
Arguments
MLModelId = ::String
– Required
The ID assigned to the MLModel
during creation.
Returns
CreateRealtimeEndpointOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.delete_batch_prediction
— Function.using AWSSDK.MachineLearning.delete_batch_prediction
delete_batch_prediction([::AWSConfig], arguments::Dict)
delete_batch_prediction([::AWSConfig]; BatchPredictionId=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DeleteBatchPrediction", arguments::Dict)
machinelearning([::AWSConfig], "DeleteBatchPrediction", BatchPredictionId=)
DeleteBatchPrediction Operation
Assigns the DELETED status to a BatchPrediction
, rendering it unusable.
After using the DeleteBatchPrediction
operation, you can use the GetBatchPrediction operation to verify that the status of the BatchPrediction
changed to DELETED.
Caution: The result of the DeleteBatchPrediction
operation is irreversible.
Arguments
BatchPredictionId = ::String
– Required
A user-supplied ID that uniquely identifies the BatchPrediction
.
Returns
DeleteBatchPredictionOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.delete_data_source
— Function.using AWSSDK.MachineLearning.delete_data_source
delete_data_source([::AWSConfig], arguments::Dict)
delete_data_source([::AWSConfig]; DataSourceId=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DeleteDataSource", arguments::Dict)
machinelearning([::AWSConfig], "DeleteDataSource", DataSourceId=)
DeleteDataSource Operation
Assigns the DELETED status to a DataSource
, rendering it unusable.
After using the DeleteDataSource
operation, you can use the GetDataSource operation to verify that the status of the DataSource
changed to DELETED.
Caution: The results of the DeleteDataSource
operation are irreversible.
Arguments
DataSourceId = ::String
– Required
A user-supplied ID that uniquely identifies the DataSource
.
Returns
DeleteDataSourceOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.delete_evaluation
— Function.using AWSSDK.MachineLearning.delete_evaluation
delete_evaluation([::AWSConfig], arguments::Dict)
delete_evaluation([::AWSConfig]; EvaluationId=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DeleteEvaluation", arguments::Dict)
machinelearning([::AWSConfig], "DeleteEvaluation", EvaluationId=)
DeleteEvaluation Operation
Assigns the DELETED
status to an Evaluation
, rendering it unusable.
After invoking the DeleteEvaluation
operation, you can use the GetEvaluation
operation to verify that the status of the Evaluation
changed to DELETED
.
<caution><title>Caution</title>
The results of the DeleteEvaluation
operation are irreversible.</caution>
Arguments
EvaluationId = ::String
– Required
A user-supplied ID that uniquely identifies the Evaluation
to delete.
Returns
DeleteEvaluationOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.delete_mlmodel
— Function.using AWSSDK.MachineLearning.delete_mlmodel
delete_mlmodel([::AWSConfig], arguments::Dict)
delete_mlmodel([::AWSConfig]; MLModelId=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DeleteMLModel", arguments::Dict)
machinelearning([::AWSConfig], "DeleteMLModel", MLModelId=)
DeleteMLModel Operation
Assigns the DELETED
status to an MLModel
, rendering it unusable.
After using the DeleteMLModel
operation, you can use the GetMLModel
operation to verify that the status of the MLModel
changed to DELETED.
Caution: The result of the DeleteMLModel
operation is irreversible.
Arguments
MLModelId = ::String
– Required
A user-supplied ID that uniquely identifies the MLModel
.
Returns
DeleteMLModelOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.delete_realtime_endpoint
— Function.using AWSSDK.MachineLearning.delete_realtime_endpoint
delete_realtime_endpoint([::AWSConfig], arguments::Dict)
delete_realtime_endpoint([::AWSConfig]; MLModelId=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DeleteRealtimeEndpoint", arguments::Dict)
machinelearning([::AWSConfig], "DeleteRealtimeEndpoint", MLModelId=)
DeleteRealtimeEndpoint Operation
Deletes a real time endpoint of an MLModel
.
Arguments
MLModelId = ::String
– Required
The ID assigned to the MLModel
during creation.
Returns
DeleteRealtimeEndpointOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.delete_tags
— Function.using AWSSDK.MachineLearning.delete_tags
delete_tags([::AWSConfig], arguments::Dict)
delete_tags([::AWSConfig]; TagKeys=, ResourceId=, ResourceType=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DeleteTags", arguments::Dict)
machinelearning([::AWSConfig], "DeleteTags", TagKeys=, ResourceId=, ResourceType=)
DeleteTags Operation
Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
If you specify a tag that doesn't exist, Amazon ML ignores it.
Arguments
TagKeys = [::String, ...]
– Required
One or more tags to delete.
ResourceId = ::String
– Required
The ID of the tagged ML object. For example, exampleModelId
.
ResourceType = "BatchPrediction", "DataSource", "Evaluation" or "MLModel"
– Required
The type of the tagged ML object.
Returns
DeleteTagsOutput
Exceptions
InvalidInputException
, InvalidTagException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
using AWSSDK.MachineLearning.describe_batch_predictions
describe_batch_predictions([::AWSConfig], arguments::Dict)
describe_batch_predictions([::AWSConfig]; <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DescribeBatchPredictions", arguments::Dict)
machinelearning([::AWSConfig], "DescribeBatchPredictions", <keyword arguments>)
DescribeBatchPredictions Operation
Returns a list of BatchPrediction
operations that match the search criteria in the request.
Arguments
FilterVariable = "CreatedAt", "LastUpdatedAt", "Status", "Name", "IAMUser", "MLModelId", "DataSourceId" or "DataURI"
Use one of the following variables to filter a list of BatchPrediction
:
CreatedAt
- Sets the search criteria to theBatchPrediction
creation date.Status
- Sets the search criteria to theBatchPrediction
status.Name
- Sets the search criteria to the contents of theBatchPrediction
Name
.IAMUser
- Sets the search criteria to the user account that invoked theBatchPrediction
creation.MLModelId
- Sets the search criteria to theMLModel
used in theBatchPrediction
.DataSourceId
- Sets the search criteria to theDataSource
used in theBatchPrediction
.DataURI
- Sets the search criteria to the data file(s) used in theBatchPrediction
. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory.
EQ = ::String
The equal to operator. The BatchPrediction
results will have FilterVariable
values that exactly match the value specified with EQ
.
GT = ::String
The greater than operator. The BatchPrediction
results will have FilterVariable
values that are greater than the value specified with GT
.
LT = ::String
The less than operator. The BatchPrediction
results will have FilterVariable
values that are less than the value specified with LT
.
GE = ::String
The greater than or equal to operator. The BatchPrediction
results will have FilterVariable
values that are greater than or equal to the value specified with GE
.
LE = ::String
The less than or equal to operator. The BatchPrediction
results will have FilterVariable
values that are less than or equal to the value specified with LE
.
NE = ::String
The not equal to operator. The BatchPrediction
results will have FilterVariable
values not equal to the value specified with NE
.
Prefix = ::String
A string that is found at the beginning of a variable, such as Name
or Id
.
For example, a Batch Prediction
operation could have the Name
2014-09-09-HolidayGiftMailer
. To search for this BatchPrediction
, select Name
for the FilterVariable
and any of the following strings for the Prefix
:
2014-09
2014-09-09
2014-09-09-Holiday
SortOrder = "asc" or "dsc"
A two-value parameter that determines the sequence of the resulting list of MLModel
s.
asc
- Arranges the list in ascending order (A-Z, 0-9).dsc
- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by FilterVariable
.
NextToken = ::String
An ID of the page in the paginated results.
Limit = ::Int
The number of pages of information to include in the result. The range of acceptable values is 1
through 100
. The default value is 100
.
Returns
DescribeBatchPredictionsOutput
Exceptions
InvalidInputException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.describe_data_sources
— Function.using AWSSDK.MachineLearning.describe_data_sources
describe_data_sources([::AWSConfig], arguments::Dict)
describe_data_sources([::AWSConfig]; <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DescribeDataSources", arguments::Dict)
machinelearning([::AWSConfig], "DescribeDataSources", <keyword arguments>)
DescribeDataSources Operation
Returns a list of DataSource
that match the search criteria in the request.
Arguments
FilterVariable = "CreatedAt", "LastUpdatedAt", "Status", "Name", "DataLocationS3" or "IAMUser"
Use one of the following variables to filter a list of DataSource
:
CreatedAt
- Sets the search criteria toDataSource
creation dates.Status
- Sets the search criteria toDataSource
statuses.Name
- Sets the search criteria to the contents ofDataSource
Name
.DataUri
- Sets the search criteria to the URI of data files used to create theDataSource
. The URI can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.IAMUser
- Sets the search criteria to the user account that invoked theDataSource
creation.
EQ = ::String
The equal to operator. The DataSource
results will have FilterVariable
values that exactly match the value specified with EQ
.
GT = ::String
The greater than operator. The DataSource
results will have FilterVariable
values that are greater than the value specified with GT
.
LT = ::String
The less than operator. The DataSource
results will have FilterVariable
values that are less than the value specified with LT
.
GE = ::String
The greater than or equal to operator. The DataSource
results will have FilterVariable
values that are greater than or equal to the value specified with GE
.
LE = ::String
The less than or equal to operator. The DataSource
results will have FilterVariable
values that are less than or equal to the value specified with LE
.
NE = ::String
The not equal to operator. The DataSource
results will have FilterVariable
values not equal to the value specified with NE
.
Prefix = ::String
A string that is found at the beginning of a variable, such as Name
or Id
.
For example, a DataSource
could have the Name
2014-09-09-HolidayGiftMailer
. To search for this DataSource
, select Name
for the FilterVariable
and any of the following strings for the Prefix
:
2014-09
2014-09-09
2014-09-09-Holiday
SortOrder = "asc" or "dsc"
A two-value parameter that determines the sequence of the resulting list of DataSource
.
asc
- Arranges the list in ascending order (A-Z, 0-9).dsc
- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by FilterVariable
.
NextToken = ::String
The ID of the page in the paginated results.
Limit = ::Int
The maximum number of DataSource
to include in the result.
Returns
DescribeDataSourcesOutput
Exceptions
InvalidInputException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.describe_evaluations
— Function.using AWSSDK.MachineLearning.describe_evaluations
describe_evaluations([::AWSConfig], arguments::Dict)
describe_evaluations([::AWSConfig]; <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DescribeEvaluations", arguments::Dict)
machinelearning([::AWSConfig], "DescribeEvaluations", <keyword arguments>)
DescribeEvaluations Operation
Returns a list of DescribeEvaluations
that match the search criteria in the request.
Arguments
FilterVariable = "CreatedAt", "LastUpdatedAt", "Status", "Name", "IAMUser", "MLModelId", "DataSourceId" or "DataURI"
Use one of the following variable to filter a list of Evaluation
objects:
CreatedAt
- Sets the search criteria to theEvaluation
creation date.Status
- Sets the search criteria to theEvaluation
status.Name
- Sets the search criteria to the contents ofEvaluation
Name
.IAMUser
- Sets the search criteria to the user account that invoked anEvaluation
.MLModelId
- Sets the search criteria to theMLModel
that was evaluated.DataSourceId
- Sets the search criteria to theDataSource
used inEvaluation
.DataUri
- Sets the search criteria to the data file(s) used inEvaluation
. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory.
EQ = ::String
The equal to operator. The Evaluation
results will have FilterVariable
values that exactly match the value specified with EQ
.
GT = ::String
The greater than operator. The Evaluation
results will have FilterVariable
values that are greater than the value specified with GT
.
LT = ::String
The less than operator. The Evaluation
results will have FilterVariable
values that are less than the value specified with LT
.
GE = ::String
The greater than or equal to operator. The Evaluation
results will have FilterVariable
values that are greater than or equal to the value specified with GE
.
LE = ::String
The less than or equal to operator. The Evaluation
results will have FilterVariable
values that are less than or equal to the value specified with LE
.
NE = ::String
The not equal to operator. The Evaluation
results will have FilterVariable
values not equal to the value specified with NE
.
Prefix = ::String
A string that is found at the beginning of a variable, such as Name
or Id
.
For example, an Evaluation
could have the Name
2014-09-09-HolidayGiftMailer
. To search for this Evaluation
, select Name
for the FilterVariable
and any of the following strings for the Prefix
:
2014-09
2014-09-09
2014-09-09-Holiday
SortOrder = "asc" or "dsc"
A two-value parameter that determines the sequence of the resulting list of Evaluation
.
asc
- Arranges the list in ascending order (A-Z, 0-9).dsc
- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by FilterVariable
.
NextToken = ::String
The ID of the page in the paginated results.
Limit = ::Int
The maximum number of Evaluation
to include in the result.
Returns
DescribeEvaluationsOutput
Exceptions
InvalidInputException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.describe_mlmodels
— Function.using AWSSDK.MachineLearning.describe_mlmodels
describe_mlmodels([::AWSConfig], arguments::Dict)
describe_mlmodels([::AWSConfig]; <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DescribeMLModels", arguments::Dict)
machinelearning([::AWSConfig], "DescribeMLModels", <keyword arguments>)
DescribeMLModels Operation
Returns a list of MLModel
that match the search criteria in the request.
Arguments
FilterVariable = "CreatedAt", "LastUpdatedAt", "Status", "Name", "IAMUser", "TrainingDataSourceId", "RealtimeEndpointStatus", "MLModelType", "Algorithm" or "TrainingDataURI"
Use one of the following variables to filter a list of MLModel
:
CreatedAt
- Sets the search criteria toMLModel
creation date.Status
- Sets the search criteria toMLModel
status.Name
- Sets the search criteria to the contents ofMLModel
Name
.IAMUser
- Sets the search criteria to the user account that invoked theMLModel
creation.TrainingDataSourceId
- Sets the search criteria to theDataSource
used to train one or moreMLModel
.RealtimeEndpointStatus
- Sets the search criteria to theMLModel
real-time endpoint status.MLModelType
- Sets the search criteria toMLModel
type: binary, regression, or multi-class.Algorithm
- Sets the search criteria to the algorithm that theMLModel
uses.TrainingDataURI
- Sets the search criteria to the data file(s) used in training aMLModel
. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
EQ = ::String
The equal to operator. The MLModel
results will have FilterVariable
values that exactly match the value specified with EQ
.
GT = ::String
The greater than operator. The MLModel
results will have FilterVariable
values that are greater than the value specified with GT
.
LT = ::String
The less than operator. The MLModel
results will have FilterVariable
values that are less than the value specified with LT
.
GE = ::String
The greater than or equal to operator. The MLModel
results will have FilterVariable
values that are greater than or equal to the value specified with GE
.
LE = ::String
The less than or equal to operator. The MLModel
results will have FilterVariable
values that are less than or equal to the value specified with LE
.
NE = ::String
The not equal to operator. The MLModel
results will have FilterVariable
values not equal to the value specified with NE
.
Prefix = ::String
A string that is found at the beginning of a variable, such as Name
or Id
.
For example, an MLModel
could have the Name
2014-09-09-HolidayGiftMailer
. To search for this MLModel
, select Name
for the FilterVariable
and any of the following strings for the Prefix
:
2014-09
2014-09-09
2014-09-09-Holiday
SortOrder = "asc" or "dsc"
A two-value parameter that determines the sequence of the resulting list of MLModel
.
asc
- Arranges the list in ascending order (A-Z, 0-9).dsc
- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by FilterVariable
.
NextToken = ::String
The ID of the page in the paginated results.
Limit = ::Int
The number of pages of information to include in the result. The range of acceptable values is 1
through 100
. The default value is 100
.
Returns
DescribeMLModelsOutput
Exceptions
InvalidInputException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.describe_tags
— Function.using AWSSDK.MachineLearning.describe_tags
describe_tags([::AWSConfig], arguments::Dict)
describe_tags([::AWSConfig]; ResourceId=, ResourceType=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "DescribeTags", arguments::Dict)
machinelearning([::AWSConfig], "DescribeTags", ResourceId=, ResourceType=)
DescribeTags Operation
Describes one or more of the tags for your Amazon ML object.
Arguments
ResourceId = ::String
– Required
The ID of the ML object. For example, exampleModelId
.
ResourceType = "BatchPrediction", "DataSource", "Evaluation" or "MLModel"
– Required
The type of the ML object.
Returns
DescribeTagsOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.get_batch_prediction
— Function.using AWSSDK.MachineLearning.get_batch_prediction
get_batch_prediction([::AWSConfig], arguments::Dict)
get_batch_prediction([::AWSConfig]; BatchPredictionId=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "GetBatchPrediction", arguments::Dict)
machinelearning([::AWSConfig], "GetBatchPrediction", BatchPredictionId=)
GetBatchPrediction Operation
Returns a BatchPrediction
that includes detailed metadata, status, and data file information for a Batch Prediction
request.
Arguments
BatchPredictionId = ::String
– Required
An ID assigned to the BatchPrediction
at creation.
Returns
GetBatchPredictionOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.get_data_source
— Function.using AWSSDK.MachineLearning.get_data_source
get_data_source([::AWSConfig], arguments::Dict)
get_data_source([::AWSConfig]; DataSourceId=, <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "GetDataSource", arguments::Dict)
machinelearning([::AWSConfig], "GetDataSource", DataSourceId=, <keyword arguments>)
GetDataSource Operation
Returns a DataSource
that includes metadata and data file information, as well as the current status of the DataSource
.
GetDataSource
provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.
Arguments
DataSourceId = ::String
– Required
The ID assigned to the DataSource
at creation.
Verbose = ::Bool
Specifies whether the GetDataSource
operation should return DataSourceSchema
.
If true, DataSourceSchema
is returned.
If false, DataSourceSchema
is not returned.
Returns
GetDataSourceOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.get_evaluation
— Function.using AWSSDK.MachineLearning.get_evaluation
get_evaluation([::AWSConfig], arguments::Dict)
get_evaluation([::AWSConfig]; EvaluationId=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "GetEvaluation", arguments::Dict)
machinelearning([::AWSConfig], "GetEvaluation", EvaluationId=)
GetEvaluation Operation
Returns an Evaluation
that includes metadata as well as the current status of the Evaluation
.
Arguments
EvaluationId = ::String
– Required
The ID of the Evaluation
to retrieve. The evaluation of each MLModel
is recorded and cataloged. The ID provides the means to access the information.
Returns
GetEvaluationOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.get_mlmodel
— Function.using AWSSDK.MachineLearning.get_mlmodel
get_mlmodel([::AWSConfig], arguments::Dict)
get_mlmodel([::AWSConfig]; MLModelId=, <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "GetMLModel", arguments::Dict)
machinelearning([::AWSConfig], "GetMLModel", MLModelId=, <keyword arguments>)
GetMLModel Operation
Returns an MLModel
that includes detailed metadata, data source information, and the current status of the MLModel
.
GetMLModel
provides results in normal or verbose format.
Arguments
MLModelId = ::String
– Required
The ID assigned to the MLModel
at creation.
Verbose = ::Bool
Specifies whether the GetMLModel
operation should return Recipe
.
If true, Recipe
is returned.
If false, Recipe
is not returned.
Returns
GetMLModelOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.predict
— Function.using AWSSDK.MachineLearning.predict
predict([::AWSConfig], arguments::Dict)
predict([::AWSConfig]; MLModelId=, Record=, PredictEndpoint=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "Predict", arguments::Dict)
machinelearning([::AWSConfig], "Predict", MLModelId=, Record=, PredictEndpoint=)
Predict Operation
Generates a prediction for the observation using the specified ML Model
.
Note
<title>Note</title>
Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
Arguments
MLModelId = ::String
– Required
A unique identifier of the MLModel
.
Record = ::Dict{String,String}
– Required
PredictEndpoint = ::String
– Required
Returns
PredictOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
, LimitExceededException
, InternalServerException
or PredictorNotMountedException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.update_batch_prediction
— Function.using AWSSDK.MachineLearning.update_batch_prediction
update_batch_prediction([::AWSConfig], arguments::Dict)
update_batch_prediction([::AWSConfig]; BatchPredictionId=, BatchPredictionName=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "UpdateBatchPrediction", arguments::Dict)
machinelearning([::AWSConfig], "UpdateBatchPrediction", BatchPredictionId=, BatchPredictionName=)
UpdateBatchPrediction Operation
Updates the BatchPredictionName
of a BatchPrediction
.
You can use the GetBatchPrediction
operation to view the contents of the updated data element.
Arguments
BatchPredictionId = ::String
– Required
The ID assigned to the BatchPrediction
during creation.
BatchPredictionName = ::String
– Required
A new user-supplied name or description of the BatchPrediction
.
Returns
UpdateBatchPredictionOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.update_data_source
— Function.using AWSSDK.MachineLearning.update_data_source
update_data_source([::AWSConfig], arguments::Dict)
update_data_source([::AWSConfig]; DataSourceId=, DataSourceName=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "UpdateDataSource", arguments::Dict)
machinelearning([::AWSConfig], "UpdateDataSource", DataSourceId=, DataSourceName=)
UpdateDataSource Operation
Updates the DataSourceName
of a DataSource
.
You can use the GetDataSource
operation to view the contents of the updated data element.
Arguments
DataSourceId = ::String
– Required
The ID assigned to the DataSource
during creation.
DataSourceName = ::String
– Required
A new user-supplied name or description of the DataSource
that will replace the current description.
Returns
UpdateDataSourceOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.update_evaluation
— Function.using AWSSDK.MachineLearning.update_evaluation
update_evaluation([::AWSConfig], arguments::Dict)
update_evaluation([::AWSConfig]; EvaluationId=, EvaluationName=)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "UpdateEvaluation", arguments::Dict)
machinelearning([::AWSConfig], "UpdateEvaluation", EvaluationId=, EvaluationName=)
UpdateEvaluation Operation
Updates the EvaluationName
of an Evaluation
.
You can use the GetEvaluation
operation to view the contents of the updated data element.
Arguments
EvaluationId = ::String
– Required
The ID assigned to the Evaluation
during creation.
EvaluationName = ::String
– Required
A new user-supplied name or description of the Evaluation
that will replace the current content.
Returns
UpdateEvaluationOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation
AWSSDK.MachineLearning.update_mlmodel
— Function.using AWSSDK.MachineLearning.update_mlmodel
update_mlmodel([::AWSConfig], arguments::Dict)
update_mlmodel([::AWSConfig]; MLModelId=, <keyword arguments>)
using AWSCore.Services.machinelearning
machinelearning([::AWSConfig], "UpdateMLModel", arguments::Dict)
machinelearning([::AWSConfig], "UpdateMLModel", MLModelId=, <keyword arguments>)
UpdateMLModel Operation
Updates the MLModelName
and the ScoreThreshold
of an MLModel
.
You can use the GetMLModel
operation to view the contents of the updated data element.
Arguments
MLModelId = ::String
– Required
The ID assigned to the MLModel
during creation.
MLModelName = ::String
A user-supplied name or description of the MLModel
.
ScoreThreshold = float
The ScoreThreshold
used in binary classification MLModel
that marks the boundary between a positive prediction and a negative prediction.
Output values greater than or equal to the ScoreThreshold
receive a positive result from the MLModel
, such as true
. Output values less than the ScoreThreshold
receive a negative response from the MLModel
, such as false
.
Returns
UpdateMLModelOutput
Exceptions
InvalidInputException
, ResourceNotFoundException
or InternalServerException
.
See also: AWS API Documentation